We define a binary spatial weight matrix as:
wij(h)={1, if dij=h0, otherwise
Autocovariance:
Cz(h)=∑ni=1wij(h)(z2i−ˉz)(z2j−ˉz)∑ni=1wij(h)
Semivariance:
ˆγz(h)=∑ni=1wij(h)(zi−zj)22∑ni=1wij(h)
Covariogram:
Semivariogram:
The autocovariance, Cz(h), and semivariance, ˆγz(h), are related as follows: Cz(h)=σ2−ˆγz(h) where σ2 is the sample variance.
The theoretical spatial continuous process can be expressed as: zi=f(ui,vi)+ϵi
To interpolate, we use: ^zi=ˆf(xp,yp)⏟a smooth estimator, e.g., trend surface+^ϵp
Here, ˆϵp=∑ni=1λpiϵi and ϵi=zi−ˆf(xi,yi).
The expected mean squared error or prediction variance is: σ2ϵ=E[(ˆϵp−ϵi)2].
The expectation of the prediction errors is zero (unbiassedness) Find the weights λ that minimize the prediction variance (optimal estimator).
2025 Zehui Yin