
Semicircle problem with simulation

Zehui Yin

2022-10-15

If we have four ducks swimming in a circle and their locations are random and independent, what is the
probability that all four of the ducks are in the same half of the circle? In this project, I solved this problem
through simulation in R. I found that the probability of this to happen is around 50%.

We first generate the duck locations
# create a function to genereate random location in a circle
generate_point_in_circle <- function(n, radius){

output <- data.frame()
while (nrow(output) < n) {

iteration <- runif(2, min = -radius, max = radius)
if (iteration[1]ˆ2 + iteration[2]ˆ2 <= radiusˆ2) {

output <- rbind(output, iteration)
}

}
colnames(output) <- c("x", "y")
return(output)

}

# generate 10000 samples of set of four points
n <- 10000
a <- generate_point_in_circle(n, 1)
b <- generate_point_in_circle(n, 1)
c <- generate_point_in_circle(n, 1)
d <- generate_point_in_circle(n, 1)

par(mfrow = c(2,2))
plot(a[, "x"], a[, "y"], asp=1,

main = "Locations for point a", xlab = "x", ylab = "y")
plot(b[, "x"], b[, "y"], asp=1,

main = "Locations for point b", xlab = "x", ylab = "y")
plot(c[, "x"], c[, "y"], asp=1,

main = "Locations for point c", xlab = "x", ylab = "y")
plot(d[, "x"], d[, "y"], asp=1,

main = "Locations for point d", xlab = "x", ylab = "y")

1



−3 −2 −1 0 1 2 3

−
1.

0
0.

5
Locations for point a

x

y

−3 −2 −1 0 1 2 3

−
1.

0
0.

5

Locations for point b

x

y

−3 −2 −1 0 1 2 3

−
1.

0
0.

5

Locations for point c

x

y

−3 −2 −1 0 1 2 3

−
1.

0
0.

5

Locations for point d

x

y

Then we check for each set of points whether they fall within the same semicircle or not.
# create variable to record the number of TRUE happens
count_ture <- 0
for (i in 1:n) {

cond <- 0
# check whether b, c, d falls within the semicircle created by a and origin (0,0)
if (b[i,"y"]*a[i,"x"]-b[i,"x"]*a[i,"y"] > 0 &

c[i,"y"]*a[i,"x"]-c[i,"x"]*a[i,"y"] > 0 &
d[i,"y"]*a[i,"x"]-d[i,"x"]*a[i,"y"] > 0) {

cond <- cond + 1
}
if (b[i,"y"]*a[i,"x"]-b[i,"x"]*a[i,"y"] < 0 &

c[i,"y"]*a[i,"x"]-c[i,"x"]*a[i,"y"] < 0 &
d[i,"y"]*a[i,"x"]-d[i,"x"]*a[i,"y"] < 0) {

cond <- cond + 1
}
# check whether a, c, d falls within the semicircle created by b and origin (0,0)
if (a[i,"y"]*b[i,"x"]-a[i,"x"]*b[i,"y"] > 0 &

c[i,"y"]*b[i,"x"]-c[i,"x"]*b[i,"y"] > 0 &
d[i,"y"]*b[i,"x"]-d[i,"x"]*b[i,"y"] > 0) {

cond <- cond + 1
}
if (a[i,"y"]*b[i,"x"]-a[i,"x"]*b[i,"y"] < 0 &

c[i,"y"]*b[i,"x"]-c[i,"x"]*b[i,"y"] < 0 &
d[i,"y"]*b[i,"x"]-d[i,"x"]*b[i,"y"] < 0) {

cond <- cond + 1

2



}
# check whether a, b, d falls within the semicircle created by c and origin (0,0)
if (a[i,"y"]*c[i,"x"]-a[i,"x"]*c[i,"y"] > 0 &

b[i,"y"]*c[i,"x"]-b[i,"x"]*c[i,"y"] > 0 &
d[i,"y"]*c[i,"x"]-d[i,"x"]*c[i,"y"] > 0) {

cond <- cond + 1
}
if (a[i,"y"]*c[i,"x"]-a[i,"x"]*c[i,"y"] < 0 &

b[i,"y"]*c[i,"x"]-b[i,"x"]*c[i,"y"] < 0 &
d[i,"y"]*c[i,"x"]-d[i,"x"]*c[i,"y"] < 0) {

cond <- cond + 1
}
# check whether a, b, c falls within the semicircle created by d and origin (0,0)
if (a[i,"y"]*d[i,"x"]-a[i,"x"]*d[i,"y"] > 0 &

b[i,"y"]*d[i,"x"]-b[i,"x"]*d[i,"y"] > 0 &
c[i,"y"]*d[i,"x"]-c[i,"x"]*d[i,"y"] > 0) {

cond <- cond + 1
}
if (a[i,"y"]*d[i,"x"]-a[i,"x"]*d[i,"y"] < 0 &

b[i,"y"]*d[i,"x"]-b[i,"x"]*d[i,"y"] < 0 &
c[i,"y"]*d[i,"x"]-c[i,"x"]*d[i,"y"] < 0) {

cond <- cond + 1
}
# if any of the 4 conditions is met, then the four points are in the same semicircle
if (cond >= 1) {

count_ture <- count_ture + 1
}

}

# calculate the proportion
cat("Proportion of four ducks fall within the same semicircle \nwith", n,

"simulations equals =", count_ture*100/n, "%")

## Proportion of four ducks fall within the same semicircle
## with 10000 simulations equals = 49.76 %

Based on the simulation we can see that the proportion is 49.76% when we have a large sample size. Then
I want to see the changing trend in the average proportion with iteration increases. I first create a function
to replicate the process above.
ducks_simulation <- function(n) {

a <- generate_point_in_circle(n, 1)
b <- generate_point_in_circle(n, 1)
c <- generate_point_in_circle(n, 1)
d <- generate_point_in_circle(n, 1)
count_ture <- 0
for (i in 1:n) {

cond <- 0
# check whether b, c, d falls within the semicircle created by a and origin (0,0)
if (b[i,"y"]*a[i,"x"]-b[i,"x"]*a[i,"y"] > 0 &

c[i,"y"]*a[i,"x"]-c[i,"x"]*a[i,"y"] > 0 &
d[i,"y"]*a[i,"x"]-d[i,"x"]*a[i,"y"] > 0) {

cond <- cond + 1
}
if (b[i,"y"]*a[i,"x"]-b[i,"x"]*a[i,"y"] < 0 &

3



c[i,"y"]*a[i,"x"]-c[i,"x"]*a[i,"y"] < 0 &
d[i,"y"]*a[i,"x"]-d[i,"x"]*a[i,"y"] < 0) {

cond <- cond + 1
}
# check whether a, c, d falls within the semicircle created by b and origin (0,0)
if (a[i,"y"]*b[i,"x"]-a[i,"x"]*b[i,"y"] > 0 &

c[i,"y"]*b[i,"x"]-c[i,"x"]*b[i,"y"] > 0 &
d[i,"y"]*b[i,"x"]-d[i,"x"]*b[i,"y"] > 0) {

cond <- cond + 1
}
if (a[i,"y"]*b[i,"x"]-a[i,"x"]*b[i,"y"] < 0 &

c[i,"y"]*b[i,"x"]-c[i,"x"]*b[i,"y"] < 0 &
d[i,"y"]*b[i,"x"]-d[i,"x"]*b[i,"y"] < 0) {

cond <- cond + 1
}
# check whether a, b, d falls within the semicircle created by c and origin (0,0)
if (a[i,"y"]*c[i,"x"]-a[i,"x"]*c[i,"y"] > 0 &

b[i,"y"]*c[i,"x"]-b[i,"x"]*c[i,"y"] > 0 &
d[i,"y"]*c[i,"x"]-d[i,"x"]*c[i,"y"] > 0) {

cond <- cond + 1
}
if (a[i,"y"]*c[i,"x"]-a[i,"x"]*c[i,"y"] < 0 &

b[i,"y"]*c[i,"x"]-b[i,"x"]*c[i,"y"] < 0 &
d[i,"y"]*c[i,"x"]-d[i,"x"]*c[i,"y"] < 0) {

cond <- cond + 1
}
# check whether a, b, c falls within the semicircle created by d and origin (0,0)
if (a[i,"y"]*d[i,"x"]-a[i,"x"]*d[i,"y"] > 0 &

b[i,"y"]*d[i,"x"]-b[i,"x"]*d[i,"y"] > 0 &
c[i,"y"]*d[i,"x"]-c[i,"x"]*d[i,"y"] > 0) {

cond <- cond + 1
}
if (a[i,"y"]*d[i,"x"]-a[i,"x"]*d[i,"y"] < 0 &

b[i,"y"]*d[i,"x"]-b[i,"x"]*d[i,"y"] < 0 &
c[i,"y"]*d[i,"x"]-c[i,"x"]*d[i,"y"] < 0) {

cond <- cond + 1
}
# if any of the 4 conditions is met, then the four points are in the same semicircle
if (cond >= 1) {

count_ture <- count_ture + 1
}

}
return(count_ture*100/n)

}

Use parallel package to do parallel computing with the function. Like above, still simulate for 10000 times.
library(parallel)
simulation_output <- mclapply(rep(1, 10000), ducks_simulation)
simulation_output <- unlist(simulation_output)

Visualize the average proportion trend with the increase of simulation times.
pop_vis <- data.frame(matrix(nrow = 10000, ncol = 2))
colnames(pop_vis) <- c("first_n_iteration", "average proportion")

4



for (i in 1:10000) {
pop_vis[i,] <- c(i, mean(simulation_output[1:i]))

}

plot(pop_vis[, "first_n_iteration"], pop_vis[, "average proportion"],
main = "Average proportion of four ducks are in the same semicircle",
xlab = "Number of iteration", ylab = "Average proportion", type = "l",
xlim = c(0, 10000),
ylim = c(min(pop_vis[, "average proportion"]), max(pop_vis[, "average proportion"])))

abline(h = 50, col="lightblue")

0 2000 4000 6000 8000 10000

0
20

40
60

80

Average proportion of four ducks are in the same semicircle

Number of iteration

A
ve

ra
ge

 p
ro

po
rt

io
n

The average proportion seems to quickly converge to 50%.

5


